menu ☰
menu ˟

Topic-dependent sentiment analysis of financial blogs

Creator:

O'Hare, Neil; Davy, Michael; Bermingham, Adam; Ferguson, Paul; Sheridan, Páraic; Gurrin, Cathal; Smeaton, Alan F.;

Institution: Association for Computing Machinery
Subject Keywords: Machine learning; Information storage and retrieval systems; sentiment analysis; opinion mining; financial blogs;
Region:
Description:

While most work in sentiment analysis in the financial domain has focused on the use of content from traditional finance news, in this work we concentrate on more subjective sources of information, blogs. We aim to automatically determine the sentiment of financial bloggers towards companies and their stocks. To do this we develop a corpus of financial blogs, annotated with polarity of sentiment with respect to a number of companies. We conduct an analysis of the annotated corpus, from which we show there is a significant level of topic shift within this collection, and also illustrate the difficulty that human annotators have when annotating certain sentiment categories. To deal with the problem of topic shift within blog articles, we propose text extraction techniques to create topic-specific sub-documents, which we use to train a sentiment classifier. We show that such approaches provide a substantial improvement over full documentclassification and that word-based approaches perform better than sentence-based or paragraph-based approaches.

Format:

application/pdf

Related: http://doras.dcu.ie/14830/1/tsa20-ohare.pdf
Suggested citation:

O'Hare, Neil; Davy, Michael; Bermingham, Adam; Ferguson, Paul; Sheridan, Páraic; Gurrin, Cathal; Smeaton, Alan F.; . () Topic-dependent sentiment analysis of financial blogs [Online]. Available from: http://www.thehealthwell.info/node/620040 [Accessed: 19th February 2018].

  

View your saved citations and reading lists

Contributor:


 
Click here to view all the resources gathered from this organisation's website.